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A minimal coupling model exhibiting isotropic, uniaxial, and biaxial nematic phases is analyzed in detail
and its relation to existing models known in the literature is clarified. Its intrinsic symmetry properties are
exploited to restrict the relevant ranges of coupling constants. Further on, properties of the model are thor-
oughly investigated by means of bifurcation theory as proposed by Kayser and RavechéfPhys. Rev. A17,
2067s1978dg and MulderfPhys. Rev. A39, 360s1989dg. As a first step toward this goal, the bifurcation theory
is applied to a general formulation of density functional theory in terms of direct correlation functions. On a
general formal level, the theory is then analyzed to show that the bifurcation points from the reference,
high-symmetry equilibrium phase to a low-symmetry structure depend only on the properties of the one-
particle distribution function and the direct pair correlation function of the reference phase. The character of the
bifurcation swhether spinodal, critical, tricritical, isolated Landau point, etc.d depends, in addition, on a few
higher-order direct correlation functions. Explicit analytical results are derived for the case when only the
leadingL=2 terms of the potentialsmean-field analysisd or of the direct pair correlation function expansion in
the symmetry-adapted basis are retained. Formulas are compared with the numerical calculations for the
mean-field, momentumL=2 potential model, in which case they are exact. In particular, bifurcations from the
isotropic and uniaxial nematic to the biaxial nematic phases are discussed. The possibility of the recently
reported nematic uniaxial–nematic biaxial tricritical pointfA. M. Sonnet, E. G. Virga, and G. E. Durand, Phys.
Rev. E 67, 061701s2003dg is analyzed as well.
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I. INTRODUCTION

Mesogenic materials exhibit a rich variety of liquid-
crystalline phasesf1g. The simplest of them is the uniaxial
nematic, which results in the definition of a single macro-
scopic Goldstone variable known as the director.

Actually, nematogenic molecules do not possess cylindri-
cal symmetry, and sometimes have appreciable dipole mo-
ments, yet the resulting thermotropic mesophases of low-
molecular-weight compounds are usually uniaxial and
apolar. In a number of cases, theoretical treatments have
beensand still ared fruitfully simplified by assuming from the
start that nematogenic molecules areD`h symmetric. On the
the other hand, over the last 30 years, the possible effects of
molecular biaxialitysi.e., of deviations from cylindrical sym-

metryd on nematic order have been studied theoretically as
well. Molecular fieldsMFd f2–12g as well as Landau treat-
mentsf13–15g, and later simulation studies of lattice models
f16–21g, have shown that single-component models consist-
ing of molecules possessingD2h symmetry, and interacting
by appropriately chosen continuous potentials, can produce a
biaxial phase. A similar scenario has emerged from the ana-
lytical study of single-component systems consisting of bi-
axial molecules interacting via hard-core potentialsf22–30g,
also supported by simulation resultsf31–33g. In both cases,
the transition between biaxial and uniaxial nematic phases is
mostly found to be second ordersbut see a partly different
scenario in Ref.f12gd, and a direct transition between isotro-
pic and biaxial nematic phases is predicted as well. Gay-
Berne potential modelsssee Ref.f34g for a reviewd, origi-
nally developed for uniaxial molecules, have been
extensively investigated; more recently, biaxial extensions of
them have been proposed and studied by simulationssee,
e.g., Refs.f35–40gd. Most of the above cases involve single-
site models possessingD2h symmetry; on the other hand, in a
few other casesf30,33g, the potential model involves two
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identical interacting moieties in each particle: each of them is
uniaxial, and they are connected in a V-shaped fashion.
Rigid-molecule models have been considered in the above
references, and in some other casesf41g a more general MF
treatment was developed, allowing for internalstorsionald
degrees of freedom.

On the experimental side, a biaxial phase was discovered
in a lyotropic system in 1980f42g. Since 1986 there have
been numerous reports of thermotropic biaxiality in low-
molecular-weight compoundsssee, e.g., Refs.f43–46gd,
many of which have since been called into questionf47–50g.
Only recent experiments on systems involving “banana-
shaped” mesogensf51–54g seem finally to provide strong
evidence of thermotropic biaxial nematic behavior.

On the theoretical side interest in studying biaxial nematic
phase also has increased over the last two yearsf12,55–57g.
In particular, Sonnetet al. f12g have proposed a MF model
involving only two scalar order parameterssinstead of the
usual four; see the above referencesd, and exhibiting isotro-
pic and uniaxial and biaxial nematic phases. An interesting
feature of the calculated phase diagram is the presence of a
tricritical point separating uniaxial and biaxial nematic
phases. The MF phase diagram resembles that of McMillan
f1,58g for the nematic–to–smectic-A transition.

In this paper we generalize the analysis presented inf12g.
In particular we study in detail a microscopic, momentum
L=2 model for the biaxial nematic phasef6,16g by referring
to density functional formulation of the Helmholtz free en-
ergy. We start with the derivation of the bifurcation point
from the uniaxial to the biaxial nematic phase and determine
conditions under which it could change from first to second
order. A purpose of this formal analysis is to find a criterion
that is thermodynamically exact and shows at what level
approximations enter. The formulas will then be illustrated
with a MF discussion of the momentumL=2 model. Some
limiting cases of this model have already been introduced in
the literature but no complete MF analysis even for this sim-
plest case has been offered. The phase behavior of the model
will be analyzed by exploring its duality properties as well as
by bifurcation analysis.

One of the objectives of our analysis is to study thermo-
dynamic and symmetry properties of the simplest model
showing a biaxial nematic phase. The model could be helpful
to shed light on possible reasons as to why the biaxial nem-
atic is so elusive, especially in thermotropic materials.

This paper is organized as follows. After a detailed dis-
cussion of the density functional theory in Sec. II, we utilize
the formulation proposed by Mulderf24g to derive general
formulas for the uniaxial-to-biaxial nematic bifurcation
point. The formulas derived will bring information on
whether the bifurcation point is critical, spinodal, or tricriti-
cal.

Then in Sec. III we apply the formalism to discuss MF
properties of the most general nearest neighbor lattice model
with L=2 terms, which describes the uniaxial and biaxial
phases, and for which the present theory is exact. First, we
will discuss a connection of the model with other soft-
potential models known from the literature, especially in the
context of various parametrizations used by the authors.
Next, we will concentrate onstridcritical properties of the

model and show that the two-tensor modelf12g is a special
case. Our analysis will be exact for a more general case when
the symmetry-adapted expansion of the direct pair correla-
tion function is dropped at the lowest relevant order withL
=2 and when the triplet and higher direct correlations are
disregarded.

II. DENSITY FUNCTIONAL AND BIFURCATION
ANALYSIS

We consider a one-component anisotropic fluid, com-
posed of classical, identical, biaxial molecules, interacting
through a pairwise additive potentialWsx1−x2,V1,V2d;
here thex’s are the positions of the molecular centers of
mass and theV’s refer to their orientations. The two molecu-
lar orientations can be defined by ordered triplets of Euler
angleshf j ,u j ,c jj; on the other hand, it also proves conve-
nient to express them in terms of two orthonormal tripods of
vectorsse.g., eigenvectors of the two inertia tensors; see Fig.
1d, hereafter denoted byhbij and hlkj, respectively. Intermo-
lecular vectors are defined by

r = x1 − x2, r = ur u, r̂ = r /r . s1d

The symmetry properties and expansion of the pair potential
will be taken up again in the following section. According to
density functional theoryf59g, the grand potentialJfrg of
liquid crystals is a functional of the orientational, one-
particle distribution functionrsV ,xd;rsqd. In the absence
of an external field the expression forJfrg reads

Jfrg = kBTE rsqdhlnfLrsqdg − 1jdq− mE rsqddq+ Fexfrg.

s2d

The first term in Eq.s2d represents the ideal-gas contribution
with L=Îh12b6/ s2pd6m3I1I2I3 resulting from the integration
over momenta, whereI1, I2, and I3 are the principal mo-
ments of inertia,m is the mass,b=1/kBT, h is the Planck
constant,T is the absolute temperature, andkB is the Boltz-
mann constant.Fexfrg is the excess Helmholtz free energy
due to interactions andm is the chemical potential. Also
edq rsqd;edx dV rsx ,Vd=kNl with kNl being the average
number of particles in the system. For a given functional
form of Fexfrg the equilibrium one-particle density of the
bulk system is found from the variational minimum ofJ

FIG. 1. Orthonormal, right-handed, body-fixed tripods of vec-
tors representing molecular orientations and used to parametrize
intermolecular interactions.
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with respect tor. The necessary condition yielding a station-
ary distributionrSsqd reads

UdJfrg
dr

U
r=rS

= kBT ln L + kBT ln rSsqd − m − kBTC1sq,frSgd

= 0, s3d

for fixed value ofm. Note thatm also serves as a Lagrange
multiplier to guarantee that normalization ofrSsqd is ful-
filled. As usual the single-particle direct correlation function
C1sq,frSgd entering formulas3d is defined by the relation
C1sq,frSgd=−bsdFexfrg /drdur=rS

. Equations3d can be trans-
formed into a self-consistent nonlinear integral equation for
rSsqd,

rSsqd = ZS
−1exphC1sq,frSgdj, s4d

with the normalization constant ZS=L exps−bmd
=eexphC1sq,frSgdjdq/ kNl.

Now we consider a bifurcation from an equilibrium refer-
ence staterrefsqd f60g of symmetryG0 to the stationary state
rSsqd of symmetryG1, whereG1 is a subgroup ofG0. Close to
the bifurcation point the difference between the states is ar-
bitrarily small for eachq, which enables one to perform a
convergent functional Taylor expansion ofFexfrg about
rrefsqd. Recalling thatFexfrg is the generating functional of
the n-particle direct correlation functionsCn f59g and intro-
ducing the dimensionless densityr̄=kNlv0/V we find

FexfrSg = Fexfrrefg − kBTo
n=1

`
r̄n

n!
E Cnsq1,…,qn,fPrefgd

3p
i=1

n

fPSsqid − Prefsqidgdqi , s5d

where

Cnsq1,…,qn,frrefgd = − bhdnFexfrg/drsq1d ¯ drsqndjr=rref

= fdCn−1/drsqndgr=rref

andrsqd= r̄Psqd. The as yet unspecified constantv0, chosen
for each system separately, has a dimension of volume and is
constructed out of molecular parameters. For example, it
could be taken as the molecular volume for hard-core inter-
actions.

A straightforward consequence of the expansions5d is that
the self-consistent equations4d reduces to a form that can
directly be used in bifurcation analysis,

dPsqd = SZref

ZS
DPrefsqdexpHo

n=1

`

r̄nKn+1sq,fdPgdJ − Prefsqd

s6d

with

Kn+1sq,fdPgd =
1

n!
E Cn+1sq,q1,…,qn,fPrefgdp

i=1

n

dPsqiddqi

s7d

and

ZS=
v0Zref

V
E PrefsqdexpHo

n=1

`

r̄nKn+1sq,fdPgdJ
; Zrefexph¯j. s8d

HeredPsqd=PSsqd−Prefsqd, due to normalization ofPref and
PS, must satisfyedPsqddq=0. Additionally, the probability
Prefsqd must be normalized to unity, which implies that
sv0/Vde Prefsqddq=1 andfsqd=sv0/Vde Prefsqdfsqddq, where
the latter formula is the recipe to calculate thermodynamic
averages.

Clearly, by construction, Eq.s6d is satisfied bydPsqd=0.
Bifurcation analysis now seeks for nontrivial solutions that
branch off from the trivial one. Assuming that the bifurcation
takes place atr̄= r̄0 we can now systematically seek for non-
zero solutions to Eq.s6d. In analogy to the previous works
f24,61g we construct them in the vicinity of bifurcation as an
expansion in an arbitrary parametere,

dPsqd = et1sqd + e2t2sqd + ¯ ,

r̄ = r̄0 + er̄1 + e2r̄2 + ¯ , s9d

where, due to the normalization ofPsqd andPrefsqd, we can
imposeetndq=0. By substituting Eq.s9d into Eq. s6d and
comparing terms of the same order ine, we easily find that
equations fortnsqd have a hierarchical structure with respect
to Kl andtmsqd smønd

t1sqd = r̄0PrefsqdhK2sq,ft1gd − K2sq,ft1gdj, s10d

t2sqd = r̄0PrefsqdhK2sq,ft2gd − K2sq,ft2gdj

+ r̄1PrefsqdhK2sq,ft1gd − K2sq,ft1gdj

+ r̄0
2PrefsqdXhK2sq,ft1gd − K2sq,ft1gdjK2sq,ft1gd

+ K3sq,ft1gd − K3sq,ft1gd +
1

2
hK2sq,ft1gd2

− K2sq,ft1gd2jC , s11d

t3sqd = r̄0PrefsqdhK2sq,ft3gd − K2sq,ft3gdj + ¯ , s12d

A

We still need equations forr̄n, the parameters that describe
the direction and character of bifurcation and, hence, the or-
der of the associated phase transition. These are found by
noting that given the solutiontnsqd the intrinsic symmetry of
Eqs.s10d–s12d admits an additional class of solutions of the
form t̃nsqd=tnsqd+ant1sqd, with an being an arbitrary pa-
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rameter. Thus requiring from the start that the functionstnsqd
are orthogonal tot1sqd

v0

V
E tnsqdt1sqddq= dn,1, s13d

we fix both r̄n−1 andan=0. Note that the existence oft̃nsqd
expresses the freedom of monotonic reparametrization of the
expansion parametere in terms of the new parameterj :e
=oi=1aij

i.
Equationss10d–s12d considerably simplify by noting that

sad the group-subgroup relation betweenG0 and G1 and sbd
the G0 symmetry ofKnsq,fPrefgd imply that ePrefsqdt1sqddq
=0 andKnsq,ft1gd=0. Taking this into account we arrive at
simpler equations describing the bifurcation and its charac-
ter:

t1sqd = r̄0PrefsqdK2sq,ft1gd, s14d

t2sqd = r̄0PrefsqdhK2sq,ft2gd − K2sq,ft2gdj

+ r̄1PrefsqdK2sq,ft1gd, + r̄0
2PrefsqdFK3sq,ft1gd

+
1

2
hK2sq,ft1gd2 − K2sq,ft1gd2jG , s15d

t3sqd = r̄0PrefsqdhK2sq,ft3gd − K2sq,ft3gdj + ¯ , s16d

A

which are generalizations of the formulass3.4d,s3.5d from
f24g. Note, particular, thatt1sqd which bifurcates directly
from Prefsqd is an eigenfunction of the operator that involves
only the pair direct correlation function. The equations for
tnsqd, although straightforward to obtain, become quite
lengthy for nù3. We have constructed aMATHEMATICA

package to systematically work out the expressions fortnsqd.
Equationss13d–s16d can now directly be studied to iden-

tify the symmetry-breaking bifurcation from the equilibrium
state given byPrefsqd. They form a set of coupled integral
equations for the functionstn, which represent actual devia-
tions fromPrefsqd and for r̄n−1.

Please note that the equations derived are exact in the
vicinity of bifurcation. Consequently, the bifurcation points,
which are either spinodal points for the first-order phase tran-
sitions or critical points for the continuous transitions, are
fully determined from the properties of the one-particle dis-
tribution function and the direct pair correlation function of
the corresponding high-symmetry equilibrium reference
phase. The bifurcation points that mark the crossover from
spinodal to critical type of behaviorsLandau points, isolated
critical pointsd depend additionally on the properties of the
three-particle direct correlation function. Tricritical points
may depend on still higher-order direct correlation functions.
Perhaps we should add at this point that the direct correlation
functions can be related through Ornstein-Zernike type of
relations to the ordinaryn-particle distribution functions
f59g, where the latter are easily accessible in computer simu-
lations.

Alternatively, Eqs.s14d–s16d require an explicit formula
for Fexfrg. There are many approximations toFex among
which the most popular aresad the low-densitysor the gen-
eralized second-order viriald expansion,

bFexfrg = −
1

2
E rsq1dhexpf− bWsq1,q2dg − 1jrsq2ddq1dq2

s17d

and sbd the MF theory,

bFexfrg =
1

2
E rsq1dfbWsq1,q2dgrsq2ddq1dq2, s18d

which is the high-temperature expansion of Eq.s17d. In both
equations the simplified notationWsq1,q2d has been used for
the pair potential.

As a first step in dealing with Eqs.s14d–s16d we need an
initially stable phase. This is represented by the one-particle
distribution functionPrefsqd, which, for givenFexfrg, can be
found from an equation analogous tos4d with rS being re-
placed byrref. Since the bifurcation equations14d depends
entirely onPrefsqd andC2 of the reference state this general-
ized eigenfunction equation can be solved to find the eigen-
functions t1

* and the corresponding eigenvaluesr0
* . The

eigenfunctions are related to the subgroups ofG0 and can be
expressed as linear combinations of the irreducible represen-
tations ofG0. In general, the eigenvalues are degeneratef24g
and, in order to identify the corresponding “bifurcating”
phase of symmetryG1, one needs to refer to the higher-order
equationssd s15d that depend on higher-order direct correla-
tion functions. The true bifurcation parameter corresponds to
the minimum value ofr0

* , which then could be identified
with r̄0.

The character of the bifurcation depends on the sign of the
first nonvanishing parameterr̄n snù1d, usually r̄1. Gener-
ally, for r̄1,0 the bifurcation is a spinodal point while for
r̄1.0 it corresponds to a critical point. Forr̄1=0 and r̄2
Þ0 we expect to have an isolated critical point terminating a
line of first-order phase transitions. The necessary condition
satisfied by the tricritical point isr̄1= r̄2=0. In Fig. 2 the
generic bifurcation diagram is shown for critical and tricriti-
cal cases.

III. BIAXIAL ORDERING WITHIN GENERALIZED
L =2 MODEL

The formulas of the previous section will now be studied
within the MF approximations18d f67g. Whenever possible
the analysis will be carried out for a general pair potential.
On the other hand, more restrictive conditions are necessary
to analyze the uniaxial-to-biaxial nematic phase transition
and the appearance of the tricritical point recently found by
Sonnetet al. f12g. In this case we restrict our analysis to the
generalized model ofL=2. Special cases of this model, es-
pecially lattice ones, have already been studied by some of
the authors, as explained below. We shall adopt the notation
of Mulder from his paper on isotropic-symmetry-breaking
bifurcation analysis for the class of hard biaxial particles
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f24g. Notice that we do not intend to discuss relative stability
of the nematic phase with respect to positionally ordered
si.e., crystalline or smecticd ones; in other words, the func-
tion rsqd discussed in the previous section will be taken to be
spatially homogeneous. The pair potential is a real scalar
function Wsx1−x2,V1,V2d, possessing global translational
and rotational invariance. It is also invariant with respect to
interchange of the two particles. Consequently,W depends
on the coordinates and orientations of the two interacting
particles via the appropriate scalar invariants, i.e., in the for-
mula,

W= Wfr,sr̂ ·bid,sr̂ · lkd,sbi · lkd, i,k = 1,2,3g. s19d

Moreover, theD2h symmetry of particles and particle inter-
change symmetry entail thatW is even with respect to each
of the unit vectorsr̂ , bi , lk. Actually, in terms of the MF, the

relevant quantity isW̃, which results fromW by integrating
over r ; this is an even function of all termssbi ·lkd. Under

general conditions,W̃ can be expanded in a series ofS func-

tions f62–65g or in a series of Legendre polynomials of even
order.

Alternatively,W̃ can be expanded in a series of symmetry-

adapted functionsDm,n
sLd sṼd, or symmetry-adapted irreducible

tensors in Cartesian formfT̃m
sLdsb1,b2,b3dgab¯ and

fT̃n
sLdsl1, l2, l3dgab¯ in which case it reads

W̃= o
L,m,n

v̄L,mn Dm,n
sLd sṼd

= o
L,m,n

v̄L,mn T̃m
sLdsl1,l2,l3d · T̃n

sLdsb1,b2,b3d, s20d

whereDm,n
sLd are orthogonal,D2h-symmetrized linear combina-

tions of Wigner rotation functionsDm,n
sLd sṼd f66g,

Dm,n
sLd = S1

2
Î2D2+dm,0+dn,0

o
s,tPh−1,1j

Dsm,tn
sLd , s21d

E dV Dm,n
sJd sVdDp,q

sKdsVd =
8p2

s2J + 1d
dJ,Kdm,pdn,q. s22d

HereṼ denotes the set of Euler angles defining the intermo-

lecular rotation that transformsbi into lk. The fT̃m
sLdsx ,y ,zdg

tensors are defined asG1 symmetrized in Cartesian formf68g

T̃m
sLd = cm

L 1

uG1u o
gPG1

DsgdTm
sLd s23d

where

Tm
sLd = o

m1,m2

SL − 1 1 u L

m1 m2 m
DTm1

sL−1d
^ Tm2

s1d,

T0
s1d = z,

T±1
s1d =

±1
Î2

sx ± iyd. s24d

Here s L−1
m1

1
m2

u L
md are the Clebsch-Gordan coefficients anduG1u

is the number of elements of the groupG1. The appropriate
choice of thecm

L coefficientss23d allows the Cartesian ten-
sors of the same rank to satisfy the orthogonality condition
with respect to a scalar product defined as a full contraction
over Cartesian indices,

T̃m
sLd · T̃n

sJd = o
a,…,b

fT̃m
sLdga,…,bfT̃n

sJdga,…,b = dLJdmn. s25d

The summation in the expansions20d runs only over relevant
indices given byL ,m,n even, with 0øm,nøL. Notice that
particle interchange symmetry implies additionally that
v̄L,mn=v̄L,nm, which is evident from the expansion in terms

of T̃m
sLd. In the present case, the expansion will be truncated at

L=2, in keeping with many potential models studied in the
literature and referenced in the Introduction.

It should also be noted that the formalism ofDm,n
sLd func-

tions, the formalism of the irreducible Cartesian tensorsT̃m
sLd,

FIG. 2. Generic bifurcation diagramssad for a first-order phase
transition, sbd for a first-order phase transition in vicinity of
a tricritical point, andscd for a continuous phase transition. The
transition following the path fromsbd to scd describes a change of
character of the phase transition as observed, e.g., at the tricritical
point.
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and the use of scalar productsbi ·lk are all completely
equivalent, and each of them has some advantage depending
on the specific calculations to be carried out. For conve-
nience, the conversion formulas between the three sets of
functions for theL=2 representation of theD2h symmetry
are given in the Appendix. The other geometric identities
involving the scalar products that are helpful in finding rela-
tions between various models are easily obtained from them.

A. Models studied so far

The continuous interaction potentials proposed and stud-
ied in this contextssee, e.g., Refs.f5,6,12,24gd can be cast in
the form

W̃= efv̄2,00D0,0
s2d + v̄2,02sD0,2

s2d + D2,0
s2dd + v̄2,22D2,2

s2dg. s26d

The maximum absolute value of the three parameters
v̄2,00, v̄2,02, andv̄2,22, denotede, will be used to set tempera-
ture and energy scalessi.e., T* =kBT/ed. This allows us to
restrict the three scaled parameterssfor which we still use the
same symbold to the intervalf−1,1g. In many cases studied,
v̄2,00=−1 andv̄2,22,0. Simulation results suggest that the
condition v̄2,02Þ0, v̄2,22=0 entails the absence of biaxial
order f16g ssee also belowd. In this sense, the choicev̄2,02
=0, v̄2,22,0 defines a minimum coupling model still ca-
pable of producing biaxial ordering.

Various specific parametrizations have been proposed and
studied for Eq.s26d. One of them is based on an approximate
mapping from a hard-block modelf5g. In this casesdropping
an additive constantd the v̄2,mn parameters are given in terms
of b , g, andd, Table I, whereb , g, andd are defined by Eq.
s9d in Ref. f5g, in terms of lengthL, breadthB, and widthW
of the hard rectangular blocks. The caseL=10, W=1 was
studied in detail. The resulting mean field phase diagram
exhibits an isolated Landau point forB=Î10 f5g.

Another and more often studied modelf16g can be ob-
tained by starting from a dispersion model at the London–de
Boer–Heller approximationf68–70g and isotropically aver-
aging over the intermolecular vectorssee, e.g., Refs.f6,9gd.
The modelf16g has been extensively studied by both MF
ssee, e.g., Refs.f6–11gd, and Monte CarlosMCd simulations
f16–20g. According to these treatments, the maximum biaxi-
ality can be realized by the conditionl=1/Î6, where a direct
second-order transition occurs between biaxial and isotropic
phases. MF and MC estimates for this transition temperature
to be found in the literature areTMF=1.6 and TMC
=1.09±0.03, respectivelyssee, e.g., Ref.f19gd.

The first simulation study of the dispersion model was
carried out in Ref.f16g, based on the parameter values
v̄2,02=l=0.2 andv̄2,22=−0.08, respectively, and the model
was found to produce biaxial order; on the other hand, it had
also been foundf16g that a truncated model defined by the
same values ofv̄2,00 and v̄2,02, but v̄2,22=0, did not support
biaxial order.

The authors of Ref.f12g have examined the two-tensor
model ssee Table Id and, for general values ofg and l,
worked out the mathematical conditions under which the
model produces a biaxial ground state, as well as its stability.
They have also proposed the simplified model, defined by
g=0, and studied it by the MF method. In contrast to the two
above cases showing isolated Landau points, in the resulting
phase diagramsRef. f12g, Fig. 4d the biaxial-to-uniaxial tran-
sition is found to be second order for 0,lø0.20, then first
order for 0.20,lø0.22, and finally a direct first-order tran-
sition between biaxial and isotropic phases occurs forl
ù0.22. In Ref.f12g, the parameterl was restricted to the
range 0ølø

1
3. The casel.

1
3 was subsequently investi-

gated and preliminary resultsf71g suggest the existence of a
direct biaxial-to-isotropic transition, of first or second order.

Another investigated modelf21g is defined by the extreme
casev̄2,00=v̄2,02=0, v̄2,22=−1, which, so to speak, pushes
the simplification proposed in Ref.f12g even further; both
MF and simulation results indicate here a direct biaxial-to-
isotropic transition of second order; the named model can be
regarded as a crude approximation to experimentally known
shape-amphiphilic mesogensf21g.

B. General L =2 model and its properties

Now we will study in detail the potentialW̃ resulting
when the expansion is truncated at the lowest-order terms
L=2. With a slightly simplified notation and with the help of
formulas in the Appendix, it can be written down in the
following equivalent forms:

W̃= − uv00uhsgnsv00dD0,0
s2dsṼd + v0fD2,0

s2dsṼd + D0,2
s2dsṼdg

+ v2D2,2
s2dsṼdj s27d

=− uv00uhsgnsv00dL 0 ·B0 + v0fL 2 ·B0 + L 0 ·B2g

+ v2L 2 ·B2j s28d

=− uv00uFsv2 − Î3v0dsb1 · l1d2 + sv2 + Î3v0dsb2 · l2d2

+ S3

2
sgnsv00d −

v2

2
Dsb3 · l3d2 −

sgnsv00d + v2

2
G s29d

=− ṽ1sb1 · l1d2 − ṽ2sb2 · l2d2 − ṽ3sb3 · l3d2 + const, s30d

where the Cartesian counterpartsL m=T̃m
s2dshl1, l2, l3jd and

Bm=T̃m
s2dshb1,b2,b3jd of D functions are given in the Appen-

dix. As already indicated above and inf12g, formulass28d
ands29d for the potential in terms of orthonormal triplets of
vectors, Fig. 1, and their scalar products, are more appealing

TABLE I. Typical models of L=2 studied so far in the
literature.

Model v̄2,00 v̄2,02 v̄2,22

Straleyf5g b s2/Î3dg d

Dispersionf16–20g −1 ±Î2l −2l2

Two-tensorf12g −1 −Î3g −3l

Amphiphilic f21g 0 0 −1
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than the one with symmetrizedDm,n
sLd functions ssee the Ap-

pendix for detailsd, since they clearly display the symmetry
of the interaction and the meaning of the coupling constants.
On the other hand, in practical calculations of the mean field
type, the representation in terms of symmetry-adapted func-
tions allows one to use the orthogonality propertiess22d,
resulting in an enormous simplification.

Symmetry of the expressions29d, which is a complete
equivalence of the axes of the tripods associated with the
molecules, implies that the thermodynamics cannot change if
we permuteṽi among differentsbk·lkd2 terms. Consequently
the sign ofv0 in Eq. s29d is irrelevant and we could either
replacev0 by uv0u or consider only positive values ofv0. In
carrying out numerical analysis we shall restrict ourselves to
v0ù0. Moreover at least one ofṽi must be positive. If all the
coupling constants are negative we do not get a stable nem-
atic phase. Again, doing numerical calculations we assume
that ṽ3.0.

A further symmetry of the potentials27d is found if the
permutation symmetry ofs29d is combined with the require-

ment thatbW̃ is left invariant during such operation. This
yields a nontrivialduality transformationbetween states at
various temperatures. More specifically, suppose that we si-
multaneously change the “2” and “3” axes of the molecules
and substitute hsgnsv00d , uv00uv0,v2j with
hsgnsv008 d , uv008 u ,v08 ,v28j, where

sgnsv008 duv008 u =
1

4
fsgnsv00d + 2Î3v0 + 3v2guv00u, s31d

sgnsv008 dv08

=
6v0

2 + Î3v0f3 sgnsv00d − v2g + 3fsgnsv00d − v2gv2

fsgnsv00d + 2Î3v0 + 3v2gs3v0 + Î3v2d
,

s32d

sgnsv008 dv28 =
− 6v0 + Î3f3 sgnsv00d + v2g
6v0 + Î3fsgnsv00d + 3v2g

. s33d

By simple inspection we find that this so called duality trans-

formation, referred to asD23, leavesbW̃ invariant, which
implies that the thermodynamic results for particles interact-
ing through parametershv0,v2j and temperature t
=kBT/ uv00u are the same as for those interacting through
hv08 ,v28j at t8=kBT/ uv008 u. The self-dual case, defined by
the equationsv08=v0, v28=v2, obeys all points lying on
the line v2=sgnsv00d−2v0/Î3 and the point hv0,v2j
=h−sgnsv00d /Î3,−sgnsv00dj sv00=0d. The line v2=sgnsv00d
−2v0/Î3 for v0ù0 and for sgnsv00d=1 separates states of
predominantly prolate symmetry from those of predomi-
nantly oblate one.

The duality transformationD13, involving axes “1” and
“3” yields equations similar to Eqs.s31d–s33d, but with
sv0,v08d being replaced bys−v0,−v08d. The third possible du-
ality transformationD12 givesv08=−v0, v28=v2, andv008 =v00,
which is in line with the observation that the equilibrium
states ofv0 and −v0 are identical, in agreement with the
aforementioned permutation symmetry of Eq.s29d.

It is instructive to study the action ofD23 on the parameter
spacehv0,v2j. For sgnsv00d=1 this is shown in Fig. 2, where
five distinct areas, denotedA,… ,E are identified together
with their D23 imagesA23,… ,E23. These areas are separated
by self-dual scontinuous and straightd lines v2=1
−2v0/Î3, v2=1+2v0/Î3, andv0=0 of D23, D13, and D12,
respectively, and by the dashed straight linesv2=−1/3
−2v0/Î3, v2=−1/3+2v0/Î3, wherev008 of D23 andD13 van-
ishes. The three self-dual lines cross at the pointhv0,v2j
=h0,1j of maximal symmetry, where all coupling constants
of the models29d are equal. Along self-dual lines two out of
the three coupling constants become degenerate. Finally, the
dot in Fig. 2 represents the isolated,D23 self-dual point at
hv0,v2j=h−1/Î3,−1j.

It is sufficient to generate phase diagrams for the param-
eters taken from the shaded areaA in Fig. 2. The diagrams
for the remaining values of the parameters are obtained by
systematic application of the duality transformations. The pa-
rameters fromA correspond to states of predominantly pro-
late symmetry while the image statesA23 are of predomi-
nantly oblate symmetry. Therefore the self-dual line ofD23 is
expected to separate states of oblate symmetry from those of
prolate symmetry.

The interaction as given includes only the expansion
terms involvingL=2. It is the simplest possible case; how-
ever, it is sufficient for the study of biaxial and uniaxial
nematic phases. TheL=2 model could be considered as a
generalization of the well-known Maier-Saupe or Lebwohl-
Lasher interactions. The only difference is that instead of one
vector attached to a molecule we are dealing with three or-
thonormal vectors as our molecules require three axes to
characterize their orientation in space. Some special cases of
the L=2 interaction have already been studied in the litera-
ture and summarized in the previous subsection. Some rel-
evant for further analysis are collected in Table I. In particu-
lar, the gray curve in Fig. 3 corresponds to these ,ld model
studied by Biscariniet al. f18g, for which v0=Î2lù0, v2
=2l2, andv00=e.0. It crosses the self-dual line athv0,v2j
=h1/Î3,1/3j, which is exactly the self-dual point predicted
in f18g.

C. Bifurcation analysis

Now we apply formulass14d–s16d to study bifurcation
from the isotropic and the uniaxial nematic phases to the
biaxial nematic phase. As an example we will work out in
detail the MF formulas forFex, Eq. s18d, which amount to
solving the MF version

rsqd = Z−1expF− bE Wsq,q̄drsq̄ddq̄G s34d

of the self-consistent equations4d for rsqd, with rsqd
;rSsqd or rsqd;rref, and, subsequently, Eqs.s14d–s16d.

Disregarding spatially ordered phases, like smectic and
crystalline ones, and assuming thatv0Psqd; PsVd , v0tnsqd
;tnsVd and s1/Vdedq;edV fedV PsVd=1g possesses
the same symmetry as our pair interactionv̄ we can expand
the distribution functionPsVd in the D functions,
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PsVd = o
L,m,n

2L + 1

8p2 Dm,n
sLd Dm,n

sLd sVd, s35d

where

Dm,n
sLd =E dV PsVdDm,n

sLd sVd s36d

are the order parameters forLù2. Using this expansion, the
self-consistent equations34d now becomes

PsVd = Z−1expS1

t
hfsgnsv00dD0,0

s2d + v0D0,2
s2dgD0,0

s2dsVd

+ sv0D0,0
s2d + v2D0,2

s2ddD0,2
s2dsVd + fsgnsv00dD2,0

s2d

+ v0D2,2
s2dgD2,0

s2dsVd + sv0D2,0
s2d + v2D2,2

s2ddD2,2
s2dsVdjD ,

s37d

with t=kBT/ uv00ur̄ being the dimensionless temperature. For
lattice modelsr̄ should be replaced by the lattice coordina-
tion number. Equations37d could be solved iteratively by
taking regard of the definitions36d; namely, by performing
an expansion of the one-particle distribution function on the
left-hand side of Eq.s37d in the basis of symmetry-adapted

Dmn
L functions, multiplying both sides byDm8n8

L8 , and integrat-
ing over Euler angles, which yields an equivalent set of the
self-consistent equations for the order parametersDm,n

s2d . An
alternative, and much simpler, bifurcation analysis follows
directly from Eqs.s13d–s16d.

Three classes of solutions are identified:sad the isotropic
phase ofDm,n

sLd =0, being always the solution of Eq.s37d; sbd
the uniaxial prolate or oblate nematic phase; andscd the bi-
axial phase.

The bifurcation from the isotropic phase to uniaxial
phases for Eq.s37d has been studied thoroughly by Mulder
f24g. In particular, the bifurcation equations14d yields the
bifurcation temperaturet* , which in our notation is given by

t* =
1

10
fsgnsv00d + v2 + Îssgnsv00d − v2d2 + 4v0

2g. s38d

Equations38d is exact within the MF approximation for the
potentials27d. Actually, it is exact for a much more general
class of pair interactions as discussed inf24g. According to
Eq. s10d, the same formula is also obtained by replacing the
potential parametersv̄L,mn with the corresponding structural

parametersC̄2,L,mn of the direct pair correlation functionC2.
In this latter case, however, Eq.s38d becomes more compli-

cated as the coefficients-C̄2,L,mn themselves depend on the
temperature. Hence, in this case Eq.s38d becomes a self-
consistent equation fort* .

The parameters of crossover between prolate and oblate
uniaxial ordersLandau pointsd are given by equating to zero
Eq. s3.19d of f24g. It yields v2=1−2uv0u /Î3, which matches
the self-dual lines ofD13 andD23 for v2ø1, indicating that
the mean field approximation is consistent with the duality
properties of the model. A full bifurcation scenario from the
isotropic phase to biaxial and uniaxial phases is illustrated in
Figs. 4 and 5.

With the help of Eqs.s14d–s16d ands34d–s37d we are able
to derive exact formulas for the bifurcation temperaturet*
between uniaxial and biaxial nematic phases. It reads

FIG. 3. Action of the nontrivial duality transformationD23 on
the parameter spacehv0,v2j for sgnsv00d=1. Self-dual points are the
line v2=sgnsv00d−2v0/Î3 and the isolated point hv0,v2j
=h−sgnsv00d /Î3,sgnsv00djsv00=0d indicated by dot. Five different
areasA,… ,E and the correspondingD23 imagesA23,… ,E23 are
distinguished. The gray line corresponds to the parameter set stud-
ied by Biscarini et al. f18g. The points belonging to linesv2=
−1/3−2uv0u /Î3 are not self-dual except for the point above, but the
line itself is left invariant underD23. Self-dual pointshv0=0,v2

ù1j correspond to the biaxial phase.

FIG. 4. Division of parameter spacehv0,v2j for sgnsv00d.0
according to the bifurcation phase diagram from the isotropic phase.
Uniaxial disklike states bifurcate for the parameters located in the
area A. Area B corresponds to rodlike states and the thick line
represents the biaxial nematic phase. The self-dual line is a collec-
tion of Landau points.
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v2 =
sa2 − bcdv0

2 − fsgnsv00dc + 2av0gt* + t*
2

sgnsv00dsa2 − bcd + bt*
, s39d

where

70a = 20D0,2
s2d + Î15D0,2

s4d , s40d

70b = 14 + 20D0,0
s2d + D0,0

s4d + Î35D0,4
s4d , s41d

70c = 14 − 20D0,0
s2d + 6D0,0

s4d . s42d

The additional condition that the bifurcation point is the tri-
critical one reads

3h2
22 − h2

4 + 3t*
2hfj0

2 − j0
2 − t*sgnsv00dge2 − 2sh0j0 − h0j0

+ t*v0def − sh0
2 − h0

2 + t*v2df2j + 6h2
2ds2h2j2 + dj2

2d

+ dh− 4h2
3j2 + df12h2j2

2 − 6h2
2j2

2 + 4s3h2j2j2
2 − h2j2

3dd

+ s3j2
22 − j2

4dd2gj = 0, s43d

where

d =
h2j2 − t*v0

t*sgnsv00d − j2
2 , s44d

e= gfg3sln Z2,3t* − v0d − g2sln Z3,3t* − v2dg, s45d

f = gf− g3sln Z2,2t* − sgnsv00d + g2sln Z2,3t* − v0dg, s46d

g−1 = t*
−1Z0fsln Z2,3t* − v0d2 − sln Z2,2t* − sgnsv00d

3sln Z3,3t* − v2dg, s47d

gm = ln ZmZ0,0− Z0,0,m + df2ln ZmZ0,1− 2Z0,1,m

+ dsln ZmZ1,1− Z1,1,mdg, s48d

and whereZ;Z0, Eq. s37d, and derivatives ofZ with respect
to x0;D2,2

s2d , x1;D2,0
s2d , x2;D0,0

s2d , x3;D0,2
s2d are taken in the

uniaxial nematic phase, stable att* . Also the order param-
eters D0,n

sLd and the averages involvingjm=sgnsv00dDm,0
s2d

+v0Dm,2
s2d , hm=v0Dm,0

s2d +v2Dm,2
s2d must be determined in the

uniaxial nematic phase. Similar formulas can be derived by
projecting out the theorys2d onto Landau expansion about
the isotropic and the uniaxial nematic phasesf72–74g.

Numerical analysis of the bifurcation equations is pre-
sented in Figs. 6 and 7. More specifically, Figs. 6 and 7 show
an approximate phase diagram collecting bifurcation points,
parametrized by temperature and potential parameters.
Sketched is the reduced temperature as a function of the
interaction parametersv0, v2. Crosses indicate localization
of the tricritical points. Note that below the tricritical point
temperature, where the phase transitions are second order,
the bifurcation points match with the true MF phase diagram.
In all other cases they limit the true phase diagram from

FIG. 5. Division of parameter spacehv0,v2j for sgnsv00d,0
according to the bifurcation phase diagram from the isotropic phase.
Uniaxial disklike states bifurcate for the parameters located in the
areaA. In the areaB, separated fromA and C by the parabolav2

=−v0
2, no stable nematic phase exists. AreaC corresponds to rodlike

states and the thick line represents the biaxial nematic phase. The
self-dual line is a collection of Landau points.

FIG. 6. Complete bifurcation diagram for sgnsv00d.0. The up-
per surface, tailed by larger squares, represents bifurcation from the
isotropic phase. The second surface gives the bifurcation tempera-
ture from uniaxial to biaxial states. Tricritical temperatures are
marked with continuous, black line.

FIG. 7. v2 versusv0 at tricritical point. Only tricritical points in
the areaA of Fig. 3 are shown. The remaining can be obtained by a
systematic application of duality transformations. Tricritical tem-
perature varies fromt* =0.2147 for v0=0 to t* =0.2367 at v0

=0.3194, where the tricritical line meets the self-dual linev2=1
−s2/Î3dv0. Tick marks correspond to intermediate, equally spaced
temperatures.

MINIMAL COUPLING MODEL OF THE BIAXIAL NEMATIC... PHYSICAL REVIEW E 71, 051714s2005d

051714-9



below. The diagrams are representative for prolatelike mol-
ecules, localized in the areaA of Fig. 3. We draw the areas of
sad the direct isotropic-biaxial phase transition,sbd the
isotropic-uniaxial-biaxial phase transition, and the area
where no stable nematic phase is obtained. Having nematic
phases and tricritical points localized in the areaA of Fig. 3
we can now recover all other phase diagrams andstridcritical
points of the model by systematic application of the duality
transformations. Our results agree with those found earlier
for v0=0 f12g. Note a weak dependence of the tricritical
temperature onv0 and the possibility of having a tricritical
Landau point where the self-dual line crosses the tricritical
one.

IV. SUMMARY

Recent experimentsf52–54g seem to provide firm evi-
dence for the existence of a stable thermotropic biaxial nem-
atic phase. Search for this phase has been ongoing for more
than 30 years now and one of the questions addressed was as
to why the phase is so elusive. In order to provide at least
partial understanding of this issue we generalized the exist-
ing bifurcation theoriesf24,72,74g to find thermodynami-
cally exact criteria that govern the stability of the phase. We
showed explicitly that the bifurcation to the biaxial nematic
phase is given by the direct pair correlation function of the
underlying high-symmetry phasesisotropic or uniaxial nem-
aticd and we proved the hierarchical role played by the
higher-order direct correlation functions in determining the
order of the transition. The derived formulas indicate the
importance of theL=2 model in a proper understanding of
biaxial ordering. Though the model was introduced in the
literature some time agof6,16g only partial information
about its thermodynamic properties was availablessee Sec.
III A and Table I for a summaryd. We carried out the comple-
mentary analysis. In particular we concentrated on the dual-
ity properties of the model, which provide a link between
predominantly prolate and predominantly oblate states, di-
viding the parameter space into corresponding sectors.

In Sec. III we derived the mean field bifurcation tempera-
ture between the uniaxial and biaxial nematic phases within
the model and formulas identifying the character of this bi-
furcation. They tell us whether the transition is first order or
continuous. In principle, a more general analysis that is ther-
modynamically exact up to the angular momentum indexL
=2 could easily be carried out if instead of expanding the
pair potential in symmetry-adapted basis functions we ex-
panded the structural quantitiesC2 and C3. The formulas
derived remain valid provided that we disregardCn, nù3,
disregard director dependence inC2, and limit toL=2 terms
in the expansion ofC2.

The classification of the potential parameters as given in
Figs. 3–7 could be used in rough guesses as to whether any
other model aiming at reproducing the biaxial nematic phase
could really have a chance to do it. Indeed, by a simple
projection of any potential into theL=2 subspace we could
immediately identify which part of the interaction parameter

space of Fig. 3 the model is likely to occupy. This analysis
could be useful in seeking for the optimal model producing
the biaxial nematic phase and thus may help in identifying
directions to follow to get a stable thermotropic biaxial phase
in realistic materials. Clearly, the most promising direction to
follow is to get materialssmolecular modelsd with interac-
tions localized in the vicinity of self-dual lines, especially the
ones withv0<0 andv2*1.

A nontrivial question that should still be addressed is
whether the MF-predicted tricritical behavior can be ac-
counted for when fluctuations of orientational order are taken
into account.
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APPENDIX: SYMMETRY ADAPTED Dm,n
„2… FUNCTIONS

AND T̃ m
„2… TENSORS VS DIRECTIONAL COSINES

Here we list all relevantD functions and irreducibleT̃
tensors used in the paper and their relation to directional
cosines. ForL=2 there are only fourD2h-symmetric, inde-

pendentD’s and twoT̃ tensors for each orthonormal tripod
of vectors. Consequently, only four squares of directional
cosines out of ninesba ·lbd2 could be chosen independently.
Decomposition ofsba ·lbd2 in the basis ofDm,n

s2d reads

sb1 · l1d2 =
1

6
f2 + D0,0

s2d + 3D2,2
s2d − Î3sD0,2

s2d + D2,0
s2ddg, sA1d

sb2 · l2d2 =
1

6
f2 + D0,0

s2d + 3D2,2
s2d + Î3sD0,2

s2d + D2,0
s2ddg, sA2d

sb3 · l3d2 =
1

3
s1 + 2D0,0

s2dd, sA3d

sb1 · l2d2 =
1

6
f2 + D0,0

s2d − 3D2,2
s2d − Î3sD0,2

s2d − D2,0
s2ddg sA4d

sb2 · l1d2 =
1

6
f2 + D0,0

s2d − 3D2,2
s2d + Î3sD0,2

s2d − D2,0
s2ddg sA5d

sb1 · l2d2 + sb2 · l1d2 = 1 − sb1 · l1d2 − sb2 · l2d2 + sb3 · l3d2

sA6d

sb1 · l3d2 =
1

3
s1 − D0,0

s2d + Î3D0,2
s2dd sA7d

sb3 · l1d2 =
1

3
s1 − D0,0

s2d + Î3D2,0
s2dd sA8d
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sb1 · l3d2 + sb3 · l1d2 = 1 − sb1 · l1d2 + sb2 · l2d2 − sb3 · l3d2

sA9d

sb2 · l3d2 =
1

3
s1 − D0,0

s2d − Î3D0,0
s2dd sA10d

sb3 · l2d2 =
1

3
s1 − D0,0

s2d − Î3D2,0
s2dd sA11d

sb2 · l3d2 + sb3 · l2d2 = 1 + sb1 · l1d2 − sb2 · l2d2 − sb3 · l3d2,

sA12d

where the relative Euler anglesṼ in the argument ofDm,n
s2d

have been left out for clarity.
Construction of relevantT sLd tensors and of their symme-

trized counterparts follows easily from Eq.s24d. In particu-
lar, for an arbitrary right-handed orthonormal tripodhx̂ , ŷ , ẑj
the T s0dshx̂ , ŷ , ẑjd;T s0d andT s2dshx̂ , ŷ , ẑjd;T s2d tensors are

T0
s0d =

1
Î3

1 sA13d

T±2
s2d =

1

2
sx̂ ± i ŷd ^ sx̂ ± i ŷd sA14d

T±1
s2d = 7

1

2
fsx̂ ± i ŷd ^ ẑ + ẑ ^ sx̂ ± i ŷdg sA15d

T0
s2d =

1
Î6

f3ẑ ^ ẑ − 1g sA16d

1 = x̂ ^ x̂ + ŷ ^ ŷ + ẑ ^ ẑ. sA17d

The D2h symmetrization yieldsT̃0
s0d=T0

s0d and leaves only

two nonvanishing, independent tensorsT̃m
s2d,

T̃0
s2d = T0

s2d, sA18d

T̃2
s2d =

1
Î2

sx̂ ^ x̂ − ŷ ^ ŷd, sA19d

which correspond to the tensorsq andb used inf12g. Note
that up toL=2 there are only three irreducible tensors built
out of an orthonormal tripod that are consistent withD2h

symmetry: isotropicT0
s0d, uniaxial T0

s2d, and biaxialT2
s2d of

maximal biaxiality sTrfsT2
s2dd3g=0d. Further applications of

the Cartesian irreducible tensors to study chiral and biaxial
systems are found inf75–77g.

All possible relations between dependentsba ·lbd2 could
now easily be derived. In particular, from Eqs.sA1d–sA19d
one finds one possible set of relations:

D0,0
s2dsṼd = L 0 ·B0 =

1

4
+

3 coss2 b̃d
4

= −
1

2
+

3

2
sb3 · l3d2,

sA20d

D0,2
s2dsṼd = L 0 ·B2 =

Î3

2
coss2 g̃dsinsb̃d2

=
Î3

2
fsb1 · l3d2 − sb2 · l3d2g, sA21d

D2,0
s2dsṼd = L 2 ·B0 =

Î3

2
coss2ãdsinsb̃d2

=
Î3

2
fsb3 · l1d2 − sb3 · l2d2g, sA22d

D2,2
s2dsṼd = L 2 ·B2

=
1

4
coss2ãdf3 + coss2b̃dgcoss2g̃d

− cossb̃dsins2ãdsins2g̃d

= sb1 · l1d2 + sb2 · l2d2 −
1

2
sb3 · l3d2 −

1

2
,

sA23d

D2,0
s2dsṼd + D0,2

s2dsṼd = Î3fsb2 · l2d2 − sb1 · l1d2g, sA24d

whereL m=T̃m
s2dshl1, l2, l3jd andBm=T̃m

s2dshb1,b2,b3jd.
Considering the orthonormal tripodhl1, l2, l3j as being as-

sociated with symmetry axes of the nematic phase and fixing
hb1,b2,b3j to a molecule, Eqs.sA10d–sA14d allow one to
construct linear combinations ofD functions that satisfy
symmetry restrictions imposed by various nematic phases.
For example, the statea D0,0

s2d +b D0,2
s2d being the linear combi-

nation ofD0,0
s2d andD0,2

s2d describes the uniaxial phase invariant
under rotation aboutl3.

Similarly, the statesasD0,0
s2d +Î3D2,0

s2dd+bsD0,2
s2d +Î3D2,2

s2dd, and
asD0,0

s2d −Î3D2,0
s2dd+bsD0,2

s2d −Î3D2,2
s2dd describe the nematic

phases uniaxial aboutl2 andl1, respectively. The above prop-
erties follow immediately from Eqs.sA2d, sA11d, sA5d, and
sA8d.
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